Operator Training: NSRL Energy and Species Change

Created by P. Sampson

Modified by L. Hammons May 2007

Prerequisites

- This module assumes that the Booster is running properly for a given energy and species
- Features of "proper" operations include:
 - Acceptable injection, acceleration and extraction efficiencies
 - Acceptable spill parameters
 - Acceptable optices

Review of Timing Features

Energy and Species Changes

- Some elements of machine operation will remain unchanged
- Accelerated beam operation may be left on during process
- Energy and Species changes require following alterations:
 - Scaling of the magnetic elements to new beam momentum (rigidity) including:
 - Setting new user parameters in SuperMan
 - This is an extremely important first step for species changes!
 - Booster Main Magnet Function
 - Possibly spill servo function
 - Scaling of main magnet nominally handled in software
 - Tune and Chromaticity Functions
 - Transport Elements (R-line)
 - Most easily handled through use of R-line magnet manager
 - Extraction Bumps
 - Extraction Septa
 - Correction Elements
 - D6 corrector coil
 - D6 single bump
 - C3 Inflector (if necessary)
 - Adjustment of the RF parameters for new species and energy in BoosterBeamControl
 - Most energy and species changes have preset parameters

Extraction Timing

 Extraction timing remains the same for energy changes

Flattop may grow ____
 or shrink, but ____
 available spill length
 remains same ____

Main Magnet I

Magnetic Changes

- Magnets are scaled by the ratio of the rigidities of the old and new species
- MMPS functions are scaled by the same factor
 - This feature is automated in the software
- Resonant sextupole currents should be scaled by the ratio of the square roots of the rigidities

Magnetic Rigidity

The force on a moving, charged particle given by the Lorentz force:

$$F = evB = \frac{mv^2}{\rho}$$

This can be rearranged:

$$B\rho = \frac{mv}{e} = \frac{p}{e}$$

• $B\rho$ is called the *magnetic rigidity*, and if we put in all the correct units we obtain:

 $B\rho = 33.356 \cdot p \text{ [KG-m]} = 3.3356 \cdot p \text{ [T-m]} \text{ (if } p \text{ is in [GeV/c])}$

Rigidity and Dipole Fields

- A dipole with a uniform dipolar field deviates a particle by an angle θ
- The angle θ can be calculated:

$$\sin\left(\frac{\Theta}{2}\right) = \frac{L}{2\rho} = \frac{1}{2} \frac{LB}{(B\rho)}$$

• If θ is small:

$$\sin\left(\frac{\Theta}{2}\right) = \frac{\Theta}{2}$$

So we can write:

$$\Theta = \frac{LB}{\left(B\rho\right)}$$

Finding Rigidities

 Rigidities are published in the 'Gardner notes' for each NSRL run

http://www.cadops.bnl.gov/AGS/Operations/GardnerNotes/

Using the Gardner Notes

Beams and Extraction Energies

- 1 Beam order and nominal extraction energy
- 1.1 Week 1
 - 1. Protons. 1000 MeV per nucleon. May 15 (Thur).
 - Iron. 1000 MeV per nucleon. May 16-17 (Fri-Sat).
- 1.2 Week 2
 - Iron. 1000 MeV per nucleon. May 19 (Mon).
 - 2. Protons. 1000 MeV per nucleon. May 20 (Tue).
 - 3. Iron. 1000 MeV per nucleon. May 21 (Wed).
 - 4. Protons. 1000 MeV per nucleon. May 22 (Thur).
- 1.3 Week 3
- Iron. 1000 MeV per nucleon. May 27–28 (Tue–Wed).
- 2. Protons. 1000 MeV per nucleon. May 29 (Thur).
- Energies and rigidities are listed and readily accessible through the notes

Injection Parameters

Table 3: Titanium and Iron Parameters at Booster Injection

Parameter	Ti^{18+}	${ m Fe}^{20+}$	Unit
Protons	22	26	
Nucleons	48	56	
mc^2	44.6540277	52.0928437	${ m GeV}$
Archive Date	28–29 Jun 07	October 07	
11DH1 NMR Probe	4364.1	4364.1	Gauss
hf	358.0563	341.131	kHz
h	3	3	
T = 1/f	8.3786	8.79427	μs
Kinetic Energy W	144.7817	153.2415	MeV
$B\rho$	0.6669	0.6669	Tm
$B\rho/ ho$	480.974	480.974	Gauss
Booster Hall Probe	-	453.4	Gauss
Booster Gauss Clock	_	23.5	Gauss
Injection Field <i>H</i>	476.9	476.9	Gauss
Inflector Setpoint V_S	_	29.605	kV
Inflector Predicted V_I	31.235	29.759	kV

Extraction Parameters

Table 9: Titanium Parameters at Booster Extraction

Ti ¹⁸⁺ 44.6540277	Ti^{18+}	Unit
44.6540977		
44.0040211	44.6540277	${ m GeV}$
28–29 Jun 07	28–29 Jun 07	
3.9054238	3.912198	MHz
3	3	
0.768162	0.766832	μs
1000	1011.1732	MeV
15.0444189475	15.15774913	Tm
10850.18	10931.91	Gauss
_	11100	Gauss
_	4663	Amps
	3.9054238 3 0.768162 1000 15.0444189475	3.9054238 3.912198 3 3 0.768162 0.766832 1000 1011.1732 15.0444189475 15.15774913 10850.18 10931.91 - 11100

Scaling the Main Magnet

Adjusting the Spill Servo

Scaling Tunes

- Tune functions tied to an underlying model of the Booster optics
- These functions must be remodeled due to change of the Booster main magnet
- Remodeling performed automatically when function is loaded, based on main magnet function

Scaling Resonant Sextupoles

- Recall that the resonant sextupoles are a set of four sextupoles used for slow extraction
- Remodeling of sextupole currents is similar to tune currents
 - Normally performed when a new function is loaded for a given main magnet function
- Sextupoles scale as the ratio of the square roots of the rigidities

Scaling of Transport Elements

- Transport elements (R-line) are scaled using the ratio of the rigidities
- Most quickly accomplished using the R-line magnet manager
 - Magnet manager converts magnet strengths (magnetic fields) to currents based on the desired rigidity
 - Note that hysteresis of 20° bend (RD1&2) may be required after application of magnet manager

The R-line Magnet Manager

- Check that present setting of rigidity matches current beam conditions
- Use GetA to place present currents into staged currents
- Change brhos to desired rigidity for energy change
 - New values of staged currents are calculated
- Use commitA to apply new currents settings (staged currents) into magnetic elements

Scaling Extraction Bumps

- Extraction bumps (C7, D1, D4, D7, E1) are scaled according to the ratio of the rigidities
 - Determine rigidities from Gardner notes
 - Calculate ratio (greater energies require larger rigidities)
 - Multiply currents by the ratio
 - Set the extraction bumps using Function Editor

Scaling Extraction Septa

- Extraction septa at D3 and D6 are scaled similarly, using the ratio of the rigidities
 - D6 septum is generally straightforward adjustment
 - D3 may require scanning and adjustment after scaling

Adjusting Correction Elements

Although changing energy at extraction, some

injection problems may occur

 Mainly related to the D6 septum remnant field and history

- Retraining of D6 septum may be required
- Hysteresis of D3 septum may also be required
- Normally only needed when lowering extraction energy
- Scaling of D6 corrector coil and/or D6 single dipole may be required
 - Tuning may be necessary to find optimal injection efficiency

Species Change

- When changing species, you are essentially doing both a species and an energy change.
 - Everything done with the energy change must be done as well as other tasks directly related to the change in species itself.

Loading Archives

- In general, many runs have been archived and could potentially be loaded
 - This must be done with care!
- TAPE-created archives are the most desirable archives to load
 - Created at specific, reliable points in the operations cycle
 - Created by documentation routines
 - Also created by NSRL Archive Creator

Loading RF Parameters

- RF parameters are loaded via BoosterBeamControl
 - Most parameters are available as presets

Setting User Parameters

- Species and energy parameters are set in SuperMan
 - Species are available as presets
 - Species parameters must be entered manually

Using TAPE

- TAPE automates steps that have been described above
- TAPE allows for the following:
 - Archive creation
 - Energy/species scaling
 - Energy/species changes
 - Changing between preset archives

TAPE: Energy Scaling

- Energy scaling allows user to specify new energy
 - Used to scale from an existing, properly working ("good") setup to a different energy
 - Species is not allowed to change
- Machine parameters are scaled to correct value

TAPE: Archive Creation

- Morning number create machine archives
- Archive Creator saves archives of a specific energy and species for future reference
- Allows for rapid cycling between setups through the NSRL Energy Change routine

TAPE: Energy Change

NSRL Energy
 Change routine
 used to change
 between preset
 energies for a
 given species

Problems and Solutions Related to Energy or Species Changes

Symptom	Possible problem	Method for finding	Solution
No Injection	Transport from TTB	Examine pet	Load previously running values
No Injection	Inflector is wrong.	Examine pet	Load proper value.
No/Poor Injection	D6 fringe field	Observe injection on scope.	Tune D6 trim coil and or D6 single dipole magnet
No/Poor Injection or incomplete acceleration	Tune function wrong	Check Optics Control	Create and load proper function.
No acceleration	Gauss clock not on primary	Check pet and ADT	Put on Primary gauss clock.
No Acceleration No gap volts	Wrong Beam Parameters	Check in BeamControl	Load proper values.
No Extracted beam	Extraction tune wrong	Observe Extraction parameters on scope.	Adjust tunes as necessary.
No or poorly extracted beam	Extraction radius wrong	Observe spill parameters in virtual scope, intensity on GPM.	Adjust radial steering function.
Poor extraction efficiency	D3 septum at wrong or bad setting	Observe spill parameters in virtual scope, intensity on GPM.	Scan d3 septum.